The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux
نویسندگان
چکیده
The mitochondrial permeability transition pore (mPTP) has long been known to have a role in mitochondrial calcium (Ca(2+)) homeostasis under pathological conditions as a mediator of the mitochondrial permeability transition and the activation of the consequent cell death mechanism. However, its role in the context of mitochondrial Ca(2+) homeostasis is not yet clear. Several studies that were based on PPIF inhibition or knock out suggested that mPTP is involved in the Ca(2+) efflux mechanism, while other observations have revealed the opposite result. The c subunit of the mitochondrial F1/FO ATP synthase has been recently found to be a fundamental component of the mPTP. In this work, we focused on the contribution of the mPTP in the Ca(2+) efflux mechanism by modulating the expression of the c subunit. We observed that forcing mPTP opening or closing did not impair mitochondrial Ca(2+) efflux. Therefore, our results strongly suggest that the mPTP does not participate in mitochondrial Ca(2+) homeostasis in a physiological context in HeLa cells.
منابع مشابه
Methanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats
Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...
متن کاملEvaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion
Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...
متن کاملPINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death
Mutations in PINK1 cause autosomal recessive Parkinson's disease. PINK1 is a mitochondrial kinase of unknown function. We investigated calcium homeostasis and mitochondrial function in PINK1-deficient mammalian neurons. We demonstrate physiologically that PINK1 regulates calcium efflux from the mitochondria via the mitochondrial Na(+)/Ca(2+) exchanger. PINK1 deficiency causes mitochondrial accu...
متن کاملModulation of mitochondrial ion transport by inorganic polyphosphate - essential role in mitochondrial permeability transition pore
Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeab...
متن کاملMitochondrial regulation of synaptic plasticity in the hippocampus.
Synaptic mechanisms of plasticity are calcium-dependent processes that are affected by dysfunction of mitochondrial calcium buffering. Recently, we observed that mice deficient in mitochondrial voltage-dependent anion channels, the outer component of the mitochondrial permeability transition pore, have impairments in learning and hippocampal synaptic plasticity, suggesting that the mitochondria...
متن کامل